1 research outputs found

    Edge computing platforms for Internet of Things

    Get PDF
    Internet of Things (IoT) has the potential to transform many domains of human activity, enabled by the collection of data from the physical world at a massive scale. As the projected growth of IoT data exceeds that of available network capacity, transferring it to centralized cloud data centers is infeasible. Edge computing aims to solve this problem by processing data at the edge of the network, enabling applications with specialized requirements that cloud computing cannot meet. The current market of platforms that support building IoT applications is very fragmented, with offerings available from hundreds of companies with no common architecture. This threatens the realization of IoT's potential: with more interoperability, a new class of applications that combine the collected data and use it in new ways could emerge. In this thesis, promising IoT platforms for edge computing are surveyed. First, an understanding of current challenges in the field is gained through studying the available literature on the topic. Second, IoT edge platforms having the most potential to meet these challenges are chosen and reviewed for their capabilities. Finally, the platforms are compared against each other, with a focus on their potential to meet the challenges learned in the first part. The work shows that AWS IoT for the edge and Microsoft Azure IoT Edge have mature feature sets. However, these platforms are tied to their respective cloud platforms, limiting interoperability and the possibility of switching providers. On the other hand, open source EdgeX Foundry and KubeEdge have the potential for more standardization and interoperability in IoT but are limited in functionality for building practical IoT applications
    corecore